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ABSTRACT

The Navy is considering the feasibility of increasing the patrol aircraft
P-3C zero fuel weight enabling avionics and payload growth. This analysis
examines the consequences to the structural requirements of the center
section wing box. Two solutions to the structures field equations are
investigated: a simplified hand solution for preliminary feasibility
calculations and a more precise solution for design analysis. Together, the
solutions provide a necessary check for the results. The simplified solution
employs the Euler-Bemoulli assumption which generates a set of integrals
expressed in terms of the assumed displacements. These integrals, when
combined with simplified geometric shapes and symmetry, ultimately
produce a decoupled matrix solution. The precise solution uses a PC based
finite element method which simultaneously solves the field equations for
basic elements to be linked together with the appropriate boundary
conditions. For the current 135,000 pound gross weight 1g load condition,
the internal stresses calculated by finite element are in accord with those by
simplified hand calculation. Extensions from this modeling will generate
design criterion for the target 95,000 pound zero fuel weight aircraft as
well as alternate flight or taxi conditions.
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I. INTRODUCTION

The Navy is considering the feasibility of increasing the patrol aircraft
P-3C zero fuel weight enabling avionics and payload growth. An 18,000
pounds payload increase from the current zero fuel weight of 77,200
pounds will undoubtably require airframe structural modifications. This
payload increase to the present configuration will accommodate system
upgrades into the next century.

This analysis will provide the tools to determine whether the existing
center section wing box can accommodate the additional loads or if a
modification is required. Modification options ranging from variations of
the existing geometry to materials substitution such as composites will be
discussed.

A structural analysis, which provides a basis for strength and stability
assessment, begins by modeling the geometry and boundary conditions of
the center section wing box for a given flight condition. An idealized
model constructed from rods and sheets replaces the center section wing
box. This model approximates the geometry of the structure while
providing a necessary simplification that facilitates the mathematical
solution to the solid structures field equations. The wing boundary
conditions are provided by a contractor while a component inventory
method (Appendix A) is used to construct the fuselage loads.

Two solutions to the field equations provide a necessary check on the
results. The Euler-Bernoulli assumption uncouples the field equations and
leads to an integral representation of stresses in terms of the boundary
condition resultant loads applied at the centroid. The idealized model
geometry (Figure 1) allows the boundary value problem to be integrable
thereby yielding a closed form of the solution. From this closed form, a
solution to uniformly distributed (centroid) forces and moments is
practical. The second solution uses the Finite Element Method (FEM) to
simultaneously satisfy the field equations for basic elements or geometries.
These elements are combined to form the structure of interest. This
numerically based solution method allows a solution of more realistically
distributed forces and moments as well as refined geometric
configurations. The problem formulation and computational
implementations for the current application are verified for the idealized



model using closed-form hand calculated results. The Saint Venant
principle enables the resultant boundary condition loads to be modeled at
the centroid thereby verifying the (lower bound) internal stresses predicted
by the hand calculations for the static case. Upon verification of the hand
calculated results, the finite element model may be used to examine various
realistic inertial loadings within the center section wing box for any given
flight condition in the operational envelope.

~~FS 695

WS 65R

FS 571 WS 65L

Figure 1. Idealization of the Center Section Wing Box: rod and
sheet structure replace actual P-3 geometry to facilitate closed form of

mathematical solution.

Validation of the boundary condition stresses generates confidence in
the solution of the center section wing box for various inertial loadings.
New boundary loads for the proposed flight conditions of interest will help
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identify critical stress and deformation locations within the structure. The
finite element software lends itself to parametric studies of alternative
structural configurations in addition to exploring the effects of ; -creasing
the load requirements on the airframe from, for example, 3 to 3.5 g's.
Other materials including composites may be examined as replacement
options. New configurations can be readily analyzed by fine tuning the
boundary load conditions. These benefits lead one to the utilities of this
structural analysis. It provides a readily accessible feasibility check of the
existing structure and a means to design alternatives for the center section
wing box. The analytically generated data may form the basis for Request
For Proposals (RFP) which may include innovative designs (ie. composites)
and structural modifications.

3



H. Problem Definition

The future P-3 version H will accommodate an increase in the zero fuel
weight from 77,200 to 95,000 LBS. The weight added will occur within
the fuselage section of the aircraft. The proposed solutions to this
structural problem include replacing the entire wing, and replact,1 g all or
strengthening weak members of the center section wing box. Each of these
solutions requires an in-depth knowledge of the structural limitations of the
current center section wing box. Specifically, the question remains
whether the modified structure will support the added stress and strain
given the increase in zero fuel weight.

A. BOUNDARY CONDITIONS
The worst case conditions for the center section at maximum gross

weight include a 2g taxi bump on the ground and a sustained 3g turn in the
air. The lift generated by the wings accelerate the 155,000 pound airframe
with a load factor of 3.0. This lift transmits a moment and a shear into the
center section at wing station 65 (refer to Figure 1) The forward and aft
fuselage sections impart moments and shears into the center section
fuselage stations 571 and 695 respectively. The taxi load is generated by
the main landing gear impulses subjecting the inboard nacelles to vertical
accelerations. While this condition delivers a shear, the moment is of
opposite sign to the aerodynamic load yet it still acts on the center section
at wing station 65. For purposes of this study, the lg in-flight loading
condition was analyzed in detail. Other loaling conditions were provided
to cover the full spectrum of situations.

B. FUSELAGE LOADS
The fuselage loads for a 135,000 pound aircraft were constructed using

the data provided by the current P-3 version C Specification printed in
1982. The weights of various components (ie. wing, propulsion, body, tail,
electronics etc.) were broken down into fuselage weight and wing weight
both inboard and outboard of wing station 65. The fuselage weight was
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then distributed along the airframe based upon the location of the
components. The shear and moments were built up from this weight
distribution and tabulated in Appendix A. The loadings along the center
line of the fuselage were computed from:

m

M=nl wi li (2.1)

i=1

m

Venj w i  (2.2)

i--1

w i - weight of the itcomponent

1i - moment arm of the ith component

n - load factor

m - number of components

The moment arms were referenced to F.S. 571 for the forward section and
to F.S. 695 for the aft portion of the fuselage.

C. WING LOADS
The wing loads were provided by Aerostructures, Inc. located in

Arlington, Virginia (Appendix A). Their data was extrapolated from
values given for the eight loading conditions in Lockheed's Structural Life
Extension Program report for the P-3C. The bending moment and shear
were provided for lg and delta 1g increment, along the entire wing
starting at the center line and continuing out to wing station 584. The load
accuracy was quoted as between five and ten percent. The moment
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contribution about the wing My is calculated as the shear multiplied by the

distance between the lift line and mid-chord (approximately 0.2 chord).
A first order method to calculate the wing loads requires the lift to act

through the center of pressure on the mean aerodynamic chord (Figure 2).
This moment and shear felt at wing station 65 is countered by the weight of
the wing and fuel (wet wing). The total moment and shear at W.S. 65 is
determined by dividing the wing up into sections and summing the
incremental shears and moments produced at W.S. 65 by the outboard lift

distribution.

L/2 L/2

Y WS. 65 WS. 254 WS. 571
mac

Figure 2. Two Dimensional Lift Distribution : simplified
resultants (as seen by center section) shown at mean aerodynamic chord

(mac).

D. GROUND TAXI LOADS
The ground taxi loads were provided by Mr Nam Phan

(NAVAIRSYSCOM). The maximum gross weight condition occurs when
the plane rolls over a 2g bump and the wing responds in a flexible manner.
The gear through the inboard nacelle accelerate vertically upward while
the fuselage and fuel ladened wing outboard of the nacelle resist the
motion. The bending moment located at wing station 65 during this
condition creates tension on the wing top and compression on the bottom.

6



E. CONTROL SURFACE LOADS
A rudder kick produces a torque about the fuselage, a moment about

the vertical axis and an insignificant y-direction shear. The vertical
distance from the rudder center of pressure to the longitudinal (x) axis
multiplied by the lift produced by the rudder due to a deflection into the
slipstream adequately describes the torque experienced by the fuselage.
The moment generated by the rudder is a product of the rudder lift times
the longitudinal distance from F.S. 695 to the rudder center of pressure.

Elevator deflection incrementally alters the shear and moment
produced at F.S. 695. The elevator force directly adds to the remainder of
the shear at F.S. 695. The control force was multiplied by the longitudinal
distance measured from the elevator aerodynamic center to F.S. 695 to
produce this moment. The moment was added with all the rest at F.S. 695.

Ailerons generate incremental amounts of lift in comparison to that
produced by the remainder of the wing. As such, they can be readily
incorporated into the calculations. The shear adds directly to that already
calculated at W.S. 65. The moment results from the lifting force on the
aileron acting about the moment arm established by the aileron center of
pressure to W.S. 65.

This summary of load conditions exhausts the list that need be
examined for purposes of structural integrity. These conditions should in
fact be pared down further to a minimum set that can be quickly
incorporated into the model and determine whether or not the structure has
been overloaded. The answer to the overload question will determine the
need for wing box redesign thereby closing the design loop.

7



HI. GENERAL SOLUTION TO P-3C

The general engineering solution provides a linear analysis to the
question raised regarding the P-3H structural response to an increase in
zero fuel weight. This solution yields an essential comparison for the
output of the finite element program as an accuracy check. This
formulation is based on an assumed general form for the displacements
with the parameters to be determined by the specific boundary conditions.
This formulation reduced the solution of the field equations to algebraic
forms (after the necessary integrations) thus bypassing the necessit' of
solving 18 partial differential equations simultaneously.

A. SOLUTION USING EULER-BERNOULLI ASSUMPTION
The assumed displacement method was originally used by Euler and

Bernoulli over a century ago. Essentially, plane sections are assumed to
remain plane during application of bending loads. The limitation to the
theory lies in its application to only small deformations. Strain, defined in
terms of the partial derivatives of displacement, can be calculated for the
structure in terms of the assumed displacements. The constitutive
relationship for a specific material (i.e. aluminum) converts the strain to
internal stress. The interna equilibrium equations establish a set of
equations in terms of integrals for solution in terms of internal stresses.
These internal stresses are then equilibrated to the boundary tractions. A
system of integral stress equations related to the known applied boundary
conditions result. The solution of the integrals in this system of equations
is further simplified through the idealization of the actual structural
configuration by interconnecting bars ( to carry normal stress) and sheets
(to carry shear). The structure in Figure 3 models the center section wing
box of the P-3C. The internal stresses within the individual members are
constant permitting their extraction from the integrand thereby facilitating
the integration, which results in a system of algebraic equations. The
general solution, now represented in matrix form contains many coupling
elements. Decoupling is accomplished through the application of symmetry

8



to the geometry and using the specific loads that apply for a particular
flight condition. We note that this simplification is possible only for the
simplified centroidal (uniformly loaded) boundary conditions.
Nevertheless, this solution provides a useful estimate of the best case
expectations (lower bound stress) and it also provides a bench mark
verification for the finite element method solution which will be used for
examination of the realistic cases in terms of payload distribution,
structural modification and structural material substitution.

FWD
Y477

X

z
Figure 3 Center Section Wing Box Structure : Each circle

represents a node of the structure. Shear sheets exist on the vertical x-z
and y-z planes of each cell. Rods are represented by the lines which

connect each node.
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1. Summary of Field Equations

The five governing field equations are as follows:

Stress Boundary Conditions

Tz LXXGXYO 3 vX

Differential Equations of Equilibr n

aT + aY + GGz+X=O0
a~x ay az

a P- + acyy + a-Y +Y = 0 (3.2)
ax y az

a~X+ a( Y+ OG+Z= 0
ax y az

C, istitutive Relation

Gxx 1-v v v 0 0 0 Exx

aYY v 1-v v 0 0 0 EYY

zz E vv l-v 0 00 zz (33)
ay x  (l+v)(1-2v) 0 0 0 0.5-v 0 0yz

Txz 0 0 0 0 0.5-v 0 P
0 0 0 0 0 0.5-v ExJ

1xy0

10



Strain Displacement

Fxx = 0-u

-v
yy- -

aw
eFzz- aw

az
(3.4)

ay ax
av aw

E Z = - + aw

az axexz = ()Uz+ ax

Strain Compatibility

2x + E y
Ex + _ 

+  Ez az2 ay2 axay
az ax y ay aZ a axz
ahe a s a a Eu aEto 3 re (3.5)

+ax + 2a EXX 2 2 aaa ax ay azXl ayaz az a~y a
aFx ~)2 2 2xa

4ay ax ay a) axaz ax2  az2  az

The stress boundary conditions, Equation 3.1, relate the external
traction (B.C.) to the internal stresses in the first internal layer. The
second system of equations (Equation. 3.2) relates the first internal layer to

11



the adjacent layer by balance of internal forces; Hence it is known as the
differential equation of equilibrium. Equations 3.3, the constitutive
relations, convert strain uniquely into stress. Each material exhibits its
own particular constitutive relationship. Aluminum behaves in an
isotropic, Hookean manner. The strain displacement equations (Equations
3.4), relate the strain to the partial differential of the displacement.
Finally, Equation 3.5 ensures that the second derivative of the strain is
continuous or that the material will not separate anywhere within the
interior. Any solution to a solid structural problem must satisfy these five
sets of equations.

One approach to the problem requires the simultaneot, soi on of the
eighteen coupled, partial differential equations (PDE) described in
Equations 3.1 through 3.5. Each specific geometry of the structure and
boundary condition requires a different specific solution. This method
requires considerable mathematical complexity, and in fact, is frequently
intractable for realistic structural configurations. The Finite Element
Method (FEM) provides a general solution to a sub-geometry or element.
The computer uses its high speed to solve the general case for each
element. These elements may then be assembled to approximate any
specific configuration of interest.

An approximate approach to this structural problem is based upon the
Euler-Bemoulli assumption. This formulation assumes the functional form
of the displacement, i.e., that plane sections remain plane in the structure
while deforming under normal and bending loads. The assumption
guarantees that the compatibility relations, Equations 3.5, are satisfied.
Deformations of the structure must be small to ensure that the small angle
approximation for the tangent applies (ie. less than 15 degrees of shear
deformation yields an error of less than 3%). When the form of the
displacement function is assumed, the solution of the eighteen PDE's
reduces to a set of algebraic equations of differentials. In this case the
displacement is of an assumed functional form with parameters to be
determined by each specific boundary condition (B.C.) applied to the
model.

This approximate approach begins by differentiating the assumed
displacements using Equation 3.4.

12



v(x,y,z) = vo-ex(y)z +0O(y)x (3.6)

_ _dv 0  de dez
F 0 - o do " +- d (3.7)

'' ay dy dy dy

The unknowns in the displacement relation become parameters to be
determined. The strains are then expressed as internal stress using the
constitutive relationship shown in Equation 3.3. Simplification of the axial
stress expression in the y direction yields Equation 3.8.

=Edvo~ do d
°-z-+x-) (3.8)(Tyy =EFyy =Y E +(-d7

dy dy dy

Substituting these internal stress expressions into Equation 3.2 yields a set
of differential equations. Equilibrating the internal stress to the boundary
tractions, Equation 3.1, for a specific geometry results in a set of integral
equations. The integral contains the unknown stress expressed in terms of
the parameters of the assumed displacement. Equations 3.9-3.11 equate the
general B.C.'s applied at wing station 65 that have an axial stress
component.

S dv d+ xd o ) dA (3.9)
P= dy dy dy

JE oIL de do
MX E(- zd  + x-)zdA (3.10)

f y dy dy

Mz= E (d zd + xd ) x dA (3.11)
3 dy

A

13



From Equations 3.9-3.11, the model geometry was simplified by replacing
all of the structural members by sheets that carry shear and rods that
support axial loads. Through this modeling, the internal parameters
become constant and can be factored outside of the integral expression.

Py = -E dv 0  E dA +E d Ez dA-E I -x dA (3.12)
dy El dy J El dy J E1

fAA A

Mx = -El -dy E ZEl do x E-2 dA-E do zj ExzdA (3.13)
dy E I dy f EI dy f E-

M=Edvo (E do ( E do (BE 2
MZ= -E x dA +Erj -xzdA- Er-j -x dA (3.14)

dy El dy B1E dy f BE

The resulting equation was integrable since the integrand is solely related
to the geometry of the cross section. The following modulus of elasticity
weighted properties are defined:

A -J dA (3.15)

El

fA

z*=f- x dA (3.16)

*f

I E1ZM (3.17)

+zA

14



Ixx-- 7l~ EzdAE (3.18)

-= I z dA (3.19)AfEl

*AIz- A=--If E X2 dA (3.19)

1z= I A (3.20)

Using these definitions, Equations 3.12-3.14 transform into:

dvo * d 0 -* doz-*
Py= -E 1-- A +EIyz El - x (3.21)

dy dy dy
dvo - •* d0x * deOz

M= -E 1-- z + Ej "x -E Iz (3.22)
dy dy dy
dv°-•~ de * de I 3.3

Mz-E 1-x +E1l-rI - 1 - I (.3

Solving for the derivatives of the displacement functions and inserting into
Equation 3.8:

E Py + M~XX +Mxlxz E MXI, +Mjz

YY- Y + =4 2.z (3.24)E El •2 E1  . * 2
A ( 1 II - I Xz ) ( 1 I I - I xz)

The differential equations have thus been transformed into a set of coupled
algebraic equations. The shear stresses are solved for in a similar manner
and attached in Appendix B. The general shear term is:

15



0,~=~ =q(0)+ (-Mi Vylyy(-My+ V ]2.. (.5
t *

J ±..y t ds (3.26)

Q=f E ds (3.27)

The resulting stresses for the general case are:

_E P, E M~Iy +M y E MzI+MJIZ
*x -= 2 Y+ ]z (3.28)

E E 2 E 1  2

A IY z y y z-Iy

_ E E MJIX+MXIZ E MxIzz+MAxz+ a4 - Ix - --- [ (3.29)
B1 E E, 2 E 2

-+-= B Py +hxxIl+M - -!.. M~x1 +M I Ix (3.30)

~~T q(0) - y +V)IZ+ (-Mi - VY)IYZ 1QY 33
at (I,1 2 (331

16



= O _q(O) (-mx- VY)IY + (-my+ V)I .x (3.3)
t * 2t

( I=Ix- Ix)

CY Z= Y - [ ]-2 (3.33)

This system of equations can be arranged in matrix form:

[Y] = [k] [F] (3.34)

The nine generalized forces consisting of three forces, shears and moments
are weighted by the k matrix to yield nine stresses. The terms that make
up the non-zero elements of the matrix are listed below. The generalized k
matrix follows these terms.

kll k 52 --: k 93  k18- *z

E1A* El 2

k19 yI]+zI k25 = k45 =

E * * .2 * 2 t
I(Y Iyy I- Iy ) ( I yy In - Iyz)

k26=k46=- I Qz Iyz
* * *2 t * * 2 t

I Iyy I n - Iyz I ( I n - Iyz )

17



k3mk7- Iz Q y k7 E x Il -Zz

* * * 2 t E * * * 2

E * 2 * * ~2 t

x QI l -Ix xIvz

E * * * 2

kl O0 0 00 0 k18 kj9

0 00 0 k2k26 00 0

0 0 0 0k,,k6 00 0

0 00 0 k4k46 00 0

[k]= 0 k120 0 00 k,,70k59

0 00 k64 0k66 00 0

0 00 0 k75 k76 00 0

0 00 k84 0k86 00 0

0 0 k93 0 0 0 k97 k98 0

18



Further simplification is possible by applying the known loading
conditions for a given boundary. For the y face at wing station 65, the sole
axial load is a moment about the x-axis produced by the lift acting on the
wing. Accordingly, Equation 3.24 reduces to:

E M xxz E_ B __-_1 (3.3Ix --- 4 ]x ]z (3.35)YY 12 x 2
E 1  * * E1  * * 

( Ixx )z ( X X Ixx i - Ixz)

The profile geometry of the wing box is not quite symmetric but will
be assumed so for the purpose of this calculation. Therefore the cross
product of inertia terms vanish and Equation 3.35 reduces to:

yy = -E M (3.36)
Elxx

Similar arguments hold for the other stresses in Equations 3.28-3.33.
These last two simplifications lead to an uncoupling of the algebraic
expressions in the matrix as shown below:

k 18:- - [1 Zy ]k -
k (8I , k 25 =k 45 = -

Q1 E z

k36 = k76--k 57k= - -- 1---

Iyy) I i)

k66=k86 - Q , k93_ E ,

i t E
IX E1A
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0 0 0 0 0 0 0 k18 0

0 0 0 0 k25 0 0 0 0

0 0 0 0 0 k 3 6  0 0 0

0 0 0 0 k 4 5 0 0 0 0

[k]= 0 0 0 0 0 0 k5 7 0 0

0 0 0 0 0 k 6 6  0 0 0

0 0 0 0 0 k 7 6  0 0 0

0 0 0 0 0 k 8 6  0 0 0

__. 0 ka 0 0 0 0 0 0

Each stress relates to an applied boundary condition weighted by a k
factor determined from the geometry of the cross section. The in-flight Ig
condition generated the first load condition for the model. My represents

the moment generated by the fuselage forward of F.S. 571 and aft of F.S.
695. For reasons of stability and equilibrium, the fore and aft moments
are equal. The Mx moment is produced by the lift acting on the wing

through its center of pressure, the quarter chord position on the mean
aerodynamic chord. Two sets of vertical shear exist. Established by the
lift on the wing, shear passes into the center section at wing station 65
acting in the negative z direction toward the top of the selage. The
second shear results from the fuselage forward and aft of the -nter section
wing box. This shear acts in the positive z direction at F.S. 571 and F.S.
695. Pz accounts for the mass contained in the center section itself.

It should be noted that this solution, even with the Euler-Bernoulli
assumption is tractable only for the hypothetically uniform loading where
the resultant forces and moments act on the centroid of the cross-section.
In fact, there exist no structural component at the centroid to carry the
applied loads. Nevertheless, because of the mathematical tractability of this
hypothetical case, it provides a bench mark for verifying the subsequent
finite element method procedures. This idealized centroidal loading also
provides the estimation of the best case analysis, i.e., the lowest poso-ibL
internal structural stress for a ogiven payload.
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IV. HAND CALCULATION

In this chapter, the specific geometric properties of the P-3C aircraft
are reduced to appropriate forms to be consistent with the Euler-Bernoulli
formulation derived in Chapter III.

A. WING MODELING
Starting with the view from the left wingtip looking toward the

fuselage, the cross sectional properties are modeled from the Structure
Wing Fuselage Intersection diagram found in Lockheed Report No. 13102.

At wing station 65, a double shear splice connects the upper and lower
wing surfaces to the center section wing box. Tension type splices join the
beam caps together [ref 4]. At this wing station, the cross section may be
modeled as a rectangle of thickness t. The outer length runs from Fuselage
Station F.S. 571 to F.S. 695 or 124 inches. The inner length runs an inch
shorter. The outer height and inner height are 18 and 17.5 inches
respectively. The moment of inertia for this geometry is:

1 3 34

Ixx= I.(b 1h' -b 2h 2 ) = 5330in (4.1)
12

The area is:
2

A=4Ai=b 1hI- b2h2 =79.5 in (4.2)

The distance from the centroidal axis is:

h3= 8.19 in (4.3)

The cross section transformed into rods and sheets (Figure 4).

x,*; Ai 124 in 1 2h3 = 16.38 in

z 5

Figure 4. Wing Modeling: wing station 65
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Moving towards centerline from W.S. 65, the fuselage must be
accounted for in the geometry. The curved I-beams that form the main
frames constitute the overwhelming majority of the additional resistance to
the bending moment. This addition can be modeled as two rods located
above the wing box cross section already completed and two rods at the
same location as the lower part of the wing box (Figure 5).The area (Al)

represents one half of the cross sectional area of the seven frames existing

between F.S. 571 and F.S. 695. Aj equals 3.5 in2 . The vertical distance

(h4) from the top of the wing box to the I-beam varies in the real
structure, but for simplicity will be modeled as 64.4 inches (see frselage
modeling). The distance from the wing box to the lower seven fr ies is
zj=2.0 inches. The new moment of inertia term is expressed in Equation

4.4.

i i

h4 = 64.4 in

3.33 in
Ai 2h3 =16.38 in

zi Ai 2.0 in

A. A.
J j

Figure 5. Wing Modeling: wing station 54

(Aboxzbox + Acr, Zecurve + 2Ajz1) = 3.33 in (4.4)
(Abox+ Acurve+ 2Aj)

,22
Ixxtowl xxbeam + Z' beamAbeam+ Ixxbox+ Z' boxAbox+I xXIOW + Z' 2owAlow

Ixxto = 0+32300+5330+1730+0+ 1160=40500in4 (4.5)
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From Chapter III, the reduced form of the axial stress along the wing can
be expressed as:

Mxz

yy = M z (4.6)

The bending moment increases by the shear loads at the W.S. 65 and those
additional loads along the structure:

Mx (y) = Mx (65)-J65YVz(y)dy (4.7)

The last term in Equation 4.7 which requires an explanation is the z
location determined by the position of the member in question with respect
to the modulus weighted centroid of the cross section.

The shear stress follows from the reduced form of Equation 3.26:

yz- -Q (4.8)

Ixx ti

The moment of inertia term was resolved for the axial stresses and will be
reused here. The centroidal term from Equation 3.19:

Qx =  E ziA (4.9)

As with Equation 4.7, the zi term represents the distance between the

centroid and the ith element in question. Ai represents the area of the ith

element. The shear load Vz(y), increases from the wingtip to W.S. 65 as

the wing generated lift dominates the weight of the structure, ordnance and
fuel. Between W.S. 65 and the centerline, the shear is modified by the
weight of die ,-.ructure and fuel of the center section. The shears at wing
stations 65 and 0 were provided by a private contractor. The data will be
linearly interpolated between these two points to arrive at a shear value for
a given y location.
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Equation 4.8 assumes a centroidal loading which in the case of a wing
with lift acting through the 30 percent chord line must be modified by the
superposition of the stress due to the torsional loading. For single cell
closed sections such as wing station 65, the stress expression due to torque
is expressed in Equation 4.9. The enclosed area, torque and sheet thickness
are included.

My (4.10)

2At

For the case of multi-cell structures refer to Allen and Haisle: i text,
reference 2. The authors provide a method whereby cell deformations in
an n-cell structure are equated to generate n-1 equations. The final
equation comes from the equilibrium expression in which the moments
about the longitudinal axis are summed and equated to zero.

B. FUSELAGE MODELING:
The axial stresses in the x direction contend with the geometry shown

in Figure 6.

Figure 6. Simplified Fuselage Cross Section

Dissecting Figure 6 further into simpler geometries enables a
component build-up approach to the section properties. Viewed from the
nose of the aircraft looking back at F.S. 571, the upper shell and stringers
of the fuselage may be modeled as a thin sheet (Figure 7). The center piece
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may be modeled as a rectangle (Figure 8) and the lower I-beams and
fuselage as two rods.

THIN SHELL MODEL

Figure 7. Upper Shell and Stringers of the Fuselage

A Rt, 8-WWrdrd) r 21 I.=712n2(.1

z If z dA fRbf 1 = 7r16 -28.05 in (4.12)

IA AI Rz)2 a =-/ (Rr sinE (zrsiE)r de (.3

YcurveJ Rjf C iE) rd)(.3

.... 4

IYYcw-ve = 1.298 E+05 - 1.120 E+05 + 0.560 E+05 = 7.38 E+04 in 4 (4.14)
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18 in I ±6-5 in 12S

130 in.

Figure 8. Center Piece of the Fuselage

Iyox "l (b1h 13 ._ b2h 3) = 16.0 E+03 (4.15)

YYWX 2

Abox =b~h1 - b2h2 (18 (130 in) - (16.5in)(126in) = 261 in 28A i (4.16)

The moments of inertia are computed for each piece about its respective
center of gravity. At this juncture, the structure converts to rods and
sheets using the computed areas and moments of inertia to calculate the
vertical separation (Figure 9). An Ak of five square inches represents the

area of the I-beams under the wing box and the fuselage shell lumped
together two inches below the center section wing box.

curve z

box T

Ak

Figure 9. Idealized Fuselage Cross Section
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Z ce= = 32.19 in (4.17)

bbYY'30 = 7.83 in (4.18)

Solving for the modulus weighted center of gravity for the entire cross
section enables the section moment of inertia to be calculated. Figure 10
shows the dimensions of interest for the complete cross section.

- (AboxzIbox+ Acurvezcwve+ 2Akzk)_65 (.9
Zstructure'C (Abx + Acre+ 2A k) 0.5in(.9

64.38 in

0.65 iny C4
15.66 in

Figure 10. Idealized Fuselage Cross Section :with dimensions

MW=1IMnv Z' curveA cuve + I YYbox, + Z' boxA box +I yow + z'lwAlw(4.20)

IMW= 7.38 E+04 +7.68 E+04 + 1.60 E+04 + 1.34 E+04 +0 +0.29E+04
4

=1.83 E+05 in (4.21)

The simplified x direction axial stress equation follows:
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The moment of inertia term has just been solved for the homogeneous case
in Equation 4.21. The location of the bar in question, referenced to the
modulus weighted centroid, determines the value of z. The boundary
conditions at F.S. 571 and 695 were developed in the boundary condition
section and calculated in Appendix A. To determine the moment at a
particular fuselage station between F.S. 571 and 695 requires a similar
calculation based upon this component build up method.

The shear stress for the face at F.S. 571 simplifies from Equation 3.24:

GXz = -- zQ y Y(4.23)
Lyy ti

The terms in Equation 4.23 follow directly from the explanation for
Equation 4.10 where:

Qy E ziAi (4.24)
i I

The moment of inertia term was previously solved for in Equation 4.20.
The thickness depends upon the location of interest. The shear force Vz

was calculated for F.S. 571 in Appendix A. All of the lg boundary
condition loads are shown in Figure 11.
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REAR

ear

Vrear

sing
%,ng Mw (VfwWd Vwing ,ng

FWD
x

Mving = 5.97E+06 in-lbs Vwing = 24,400 lbs

14ear = 3.31 E+06 in-lbs Vrear = 8,700 lbs

Mwd = 3.31E+06 in-lbs Vfwd = 12,600 lbs
Inertia= 2* Vwing - Vrear- Vfwd = 27500 lbs

Figure 11 Boundary Condition Loads for Center Section Wing
Box : at 1g.

In this chapter, the actual P-3C aircraft geometry is reduced to
idealized rods and rectangular sheets which are statically equivalent to the
actual load and moment carrying capacity of the aircraft. The actual load
and moments are reduced to centroidal boundary conditions as shown in
Figure 11 for the 1 g condition. Stresses calculated from the 1 g condition
can be simply scaled to any multiple for feasibility studies.
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V. FINITE ELEMENT METHOD

The finite element method provides a direct solution to the field
equations (as described in Chapter II) without the simplification of Euler-
Bernoulli hypothesis. For the center section wing box it can provide
improved accuracy over the hand calculated solution for centroidal loading
as well as for other more realistic cases which are beyond hand
calculations. Small or finite elements are solved in the general sense to
simultaneously satisfy the eighteen field equations. These building blocks
are subsequently combined and matched to form the structure or geometry
of interest. Equilibrium must be satisfied at each node where the elements
connect. The external displacement and force boundary conditions are
applied to the structure. The solution to this combination of elements and
boundary conditions satisfies the minimum energy principle. This
principle guarantees a unique solution which minimizes the strain energy
preserved in the structure as it deforms under loading. Model One was
constructed to compare this method of calculation to that accomplished by
hand calculations with centroidal boundary conditions. (See Appendix D
for FEM examples)

Upon verification, subsequent load conditions can be constructed to
model a flight condition of interest (i.e. 3g, 3.5 g ... etc.). The resulting

internal stresses will identify locations which require redesign. Modified
configurations (i.e. fuel/payload) cause a redistribution of the inertial loads
within the center section. This model provides the tool from which to
explore these modifications to determine their effect on the internal stresses
of the wing box structure. If critical stresses are identified, the model
lends itself to study the replacement options for the structure. Redesign
options include additional area/mass added to a component or, on the other
hand, part replacement with an alternative material (i.e. different
composites). Both of these options require assessable software
modifications to the model definition.

The model to be constructed for finite element analysis is not
geometrically identical to the actual structure of the P-3C aircraft. A
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geometrically exact model would be too complex to implement and too
time consuming to execute; it is appropriate only for the actual design
stage. A geometrically simplified model retaining the pertinent structural
features is constructed herein; its application is intended for problem
identification and assessment of different options of payload, distribution
structural enhancement and modifications.

The finite element software used in this investigation is the PAL2 V 4.0
by MacNeil Swindler Corp. This software can be run on PC class of
computers, it has provisions for analysis of composite materials and can be
executed under NASTRAN on mini and mainframe class of computers.

This chapter describes the geometric definition of the model and the
software related procedures to assure the appropriateness of the finite
element method implementations.

A. PROCEDURES
1. Geometric Definition

The nodal points that describe the structure of interest are defined
using a rectangular coordinate system (polar and spherical are available).
Once the nodes are in place and the material specified (i.e. 2014 T-4
aluminum), the elements that make up the structure are connected to the
nodal lattice. Rods join two nodes together while quadrilateral plates
connect four nodes. The circular rods are defined by inner and outer
diameter. The shear area is nothing more than a correction term for the
parabolic shear distribution across the beam face. The square bar shear
area equals the cross-sectional area divided by 1.2. Their lengths are
prescribed by the lattice. The shear plate thickness is specified, while the
node locations determine the planer dimensions. The relation of this model
to the actual structure is shown in Figure 1 and Figure 12 below.

2. Boundary Conditions
The PAL2 software accepts forces, pressure loads, line loads, and

concentrated moments. This software limitation requires the boundary
condition moments and shears to be distributed by means of a hand
calculation. The calculated shear and moment loads apply indirectly to the
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nodes on the boundary of interest via a dummy structure that when coupled
with the Saint-Venant principle generates the centroidal load conditions on
the center section boundaries. This last procedure is necessitated by the
need to generate centroidai loads to validate the hand calculations. Once
the model has been validated, non-centroidal loads may be applied to
develop a complete structural response envelope given a variety of inertial
load conditions. Once an inertial load is specified for a given flight
condition, the structure is equilibrated; Displacements and rotations
specified as zero at one node will prevent it from flying off into space.

3. Model One
The first model built contains the rod : id she .: structure used in

the hand calculation (see Figure 12). The midel sizing comes directly
from the hand calculation with one exception. The wing box thickness was
modified to accommodate the lattice structure. A compromise height of

sixteen inches required a slight adjustnient (less than I part in 40) to the
rod cross sectional areas. This adjustment maintained constant moment of
inertia terms Ixx and Iyy* The node locations/model dimensions are listed

in Appendix C. The bar diameters were taken directly from the hand
calculation Ai and Aj terms except where they are altered to account for

the change in wing box thickness. For simplicity, the shear plate thickness
was uniformly chosen as 0.25 inches.
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z

Figure 12. Center Section Wing Box Structure : model one (bars
and sheets)

Modeling the hand calculated centroidal load requires a dummy
structure built from the face of the center section on each of its four
boundaries. This dummy structure enables the centroidal loads to be
applied at the boundary by means of the Saint-Venant principle in which
only the nonequilibrated loads are transmitted through the structure. These
nonequilibrated loads transform to the centroidal loads as they propagate
away from the boundaries.

At wing station 65 for example, the rectangular cross section consists
of four nodes. This plane is repeated two times in both the positive and
negative y-direction as depicted in Figure 13. There are a total of four
sheets on the y faces and eight each on the x and z faces of the dummy
structure. Rods connect each pair of adjacent nodes. The hand calculation
sizes the rod diameter. The loads applied outboard of wing station 65 are
such that at the boundary of interest they become the centroidal loads
identical to those used in the hand calculation. '[he four nodes on the
positive y face of the resulting structure have their displacements set to
zero to ensure equilibrium throughout the structure.
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WING STATION 65

Figure 13. Wing Station 65 Boundary modeled for comparison

with hand calculations

The remaining three boundaries are modeleL. in a parallel manner
using the dummy structure to achieve a centroidal loading on the boundary
of interest for direct comparison to the hand results.

The verifications of model formulation and implementations are made
against a hand calculated bench mark model for the simplified centroidal
loading conditions (described in Chapter 1I). The results are described in
Appendix D. They are well within the theoretical expectations and the
model presented herein can be considered as fully verified; it can be used
for feasibility studies, operational envelope definition and structural design
tradeoffs.
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VI. ALTERNATIVE SOLUTIONS (PROBLEM EXTENSION)

This chapter discusses the limitations of verifying the finite element
solution with the hand calculated results to the boundaries of the structure
for a lg centroidally distributed load. Extensions from these verified
boundary results explore the full range of the finite element solutions and
their applicability to the existing center section wing box problem. The
solution range encompasses all of the loads discussed in Chapter II.

A. BENEFITS OF THE DUAL APPROACH
The usefulness of the combined solution method falls into two

categories. The first lies in the verification of the centroidal boundary
condition (or lower bound) stresses for the finite element method. It
should be pointed out that the results of the hand calculation are valid only
for the boundaries of the model. This limitation lies in the generation of
the boundary condition loads. The loads are generated external to the wing
box and do not account for any distribution of inertia loads within the
center section itself. Secondly, completion of the finite element modeling
enables a rapid solution to the altered boundary conditions associated with a
3g load for a 95,000 pound zero fuel weight P-3 with 60,000 pounds of
fuel (the original configuration of interest). Since the solution varies
within the center section as the inertial loads are redistributed, several may
be applied simulating any of a number of configuration options. The most
straightforward is an equitable distribution throughout the center section.
From this original problem, design options are explored which will satisfy
the structural requirements associated with the proposed payload growth.

1. Configuration Change
A configuration change to the P-3H short of a structural

modification requires that a solution to the altered boundary condition
loads be applied to the existing finite element model. The internal stresses
are solved using the available software. The new fuselage boundary
condition loads are calculated in the same manner as those calculated in
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Appendix A. For the case of incre -ng the zero fuel weight, additional lift
must be generated by the wings to jstain this extra mass at the 3g flight
condition. The second solution found in Chapter II under wing boundary
condition loads, provides a component build up method to calculate the new
moments and shears at wing station 65.

a. Example 1
Suppose a new ESM suite at SS3 adds 100 pounds to the work

station 100 inches forward of F.S. 571. The 3g flight condition requires an
additional 300 pounds of lift out of the wings distributed along the span.
This addition alters the moment and shears at wing stat: -1 65. Fuselage
station 571 would experience an additional 300 pounds o1 .hear and 30,000
in-pounds of bending moment. These new loads are added to the existing
boundary condition loads and a solution generated. The internal stresses
may then be examined for failure determination. In the case where no
overstress has occurred then the inertia loads within the center section may
be redistributed until the limiting stresses are reached.

2. Changing Material Properties
There exist three solutions to the problem load which exceeds the

yield stress of a given structure given constant center section inertia forces.
The first two alternatives increase the moment of inertia terms
(denominator of Equations 3.21-3.26) the -y reducing the internal stress.
Either additional material may be used ti acrease the cross section (i.e.
fortify existing sections) or the dimensions of the wing box and/or
fuselage must be increased. The more appealing third option from the
weight viewpoint involves the use of a material with a greater specific

strength.
Replacing the entire aluminum structure with a single material (i.e.

composite) fails to alter the internal stresses. Rather, the yield stress of the
structure increases enabling greater loads to be safely carried. The partial
use of stronger materials in high stress locations of the wing box would

solve the structural problem for the case in which only portions of the
structure exceeded the yield stress.
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a. Example 2
Changing the load requirements from 3.0 to 3.5 g's provides another

opportunity to observe the structural limits. The problem requires that the
3.5 g boundary load conditions for the wing and fuselage stations be
calculated. As a rudimentary approach, the 3 g loads are multiplied by the
ratio (3.5/3.0). The new loads are applied to the boundaries of the
computer model and the stresses checked. Exceeding the yield stress
anywhere in the structure requires a redesign by one of the three methods
mentioned above. Assuming that only the stress in the axial bars between
wing station 65 and the fuselage are excessive they will be targeted with
composite replacement. The aluminum will be replaced by a composite
material with a simple software modification. The new model will be run
against the 3.5g boundary condition loads to complete the process. The
new internal stresses within the member can now be analyzed, and further
modifications made if necessary.

Two extensions from the original verified finite element solution are
explored. The first discusses the problems associated with payload increase
consisting of a single piece of equipment, while the latter confronts the
issues surrounding an increase in the flight envelope of the aircraft. Both
extensions demonstrate design benefits of the verified finite element
solution for the purpose of answering the structural integrity question
associated with the payload increase.
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VII. RESULTS

This chapter examines the internal stresses of the P-3C center section
wing box for the two calculation methods that were employed in the
analysis. The hand calculations are based upon the Euler-Bernoulli
assumption that plane sections remain plane. The finite element method
simultaneously satisfies the field equations for a given element from which
the internal stresses are determined. The results compare a ig centroidal
boundary load condition (ie. lower bound).

Comparison of the stresses is limited to wing stl- -n 65L and fuselage
station 571. Similar results are expected for the :r two boun( es.
The right wing boundary condition is symmetric to the left. Fuselage
Station 695 has a scaled down shear force while its cross-section is identical
to the forward section.

The results are presented graphically (Figures 16 and 17) and followed
in tabular form (Tables 7.1 through 7.4). Figures 14 and 15 depict the
internal stress locations for F.S.571 (X-face) and W.S.65L (Y-face).

Wing Station

65

X Fuselage Station
571

Figure 14. Stress Locations
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Figure 15. Stress Identificion:Xfcro)Yfc~otm
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Figure 16. Graph of Shear Stress Results
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Figure 17. Graph of Axial Stress Results
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TABLE 7.1. X Face Axial Stress

Axial Stress FEM (psi) Hand Calc (psi)

A 1159 1176

B -5.5 11.8
C -294 -278

D -333 -314

E -4.9 11.8

F -294 -278

TAB. 7.2. X Face Shear Stress

Shear Stress FEM (psi) Hand Calc (psi)

G 0 12

H 313 315
I 0 24

J 0 16

K 0 15

L 108 95

M 165

N 100

0 12.5 21

P 28 23

TABLE 7.3. Y Face Axial Stress

Axial Stress FEM (psi) Hand Calc (psi)

Q 8932 9355

R -8932 -9355
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TABLE 7.4. Y Face Shear Stress

Shear Stress FEM (psi) Hana Calc (psi)

S 3361 3568
T -569 -518.5
U 569 518.5
V 2369 2531

The stresses on the X-face of the model result from an application of a
12,566 pound shear force 260 inches from the boundary of interest. This
load results in the correct shear and moment at F.S.571 due to the Saint-
Venant effect. With this centroidal loading of the fuselage, the stresses in
the horizontal sheets are expected to be zero. The hand calculation leaves
small finite stresses due mainly to round off in the five by five matrix
solution. The finite element method predicts the stress as zero. The finite
element axial stress in member A tends toward the high side, while the
remaining rod stresses tend toward the low. This phenomenon results
from the centroidal axis of the finite element model shifting towards the
top of the fuselage since the area of the shear sheets are included.

The shear load applied at thirty-three percent chord combined with the
force couple realistically models the aerodynamic loads on the wing. The
finite element stresses on this face are all within ten percent of the hand
calculated results.

The finite element stresses agree favorably with the hand results, well
within twenty percent. Axial stresses tended to be closer to the predicted
hand results than did the shear stresses. The Euler-Bernoulli assumption
explains the difference between the two sets of results.

These results verify the finite element model. The extension from this
problem remains to run the model using a realistic 3g load condition for a
95,000 pound zero fuel weight aircraft with 60,000 pounds of fuel. Since
the fuel and internal loadout are never constant, the inertia loads within the
center section must be varied to develop a full range of solutions for the
center section wing box.
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VIII. SUMMARY, CONCLUSIONS AND
RECOMMENDATIONS

The Navy is considering the feasibility of increasing the patrol aircraft
P-3C zero fuel weight enabling avionics and payload growth. This analysis
examines the consequences to the structural requirements of the center
section wing box. Specifically, the investigation provides an analytical
means with which to explore the structure given a payload increase of
18,000 pounds.

Two solutions to the structures field equations are investigated: a
simplified hand solution for preliminary feasibility calculations and a more
precise solution for design analysis. Together, the solutions provide a
necessary check for the results. The hand calculations calibrate the finite
element solution on the boundary of interest. These calculations are valid
only for the extremely simplified centroidal loading. This loading gives
rise to uniformly distributed forces and moments and hence, the best case
(lower bound stress) condition. The primary purpose of the hand
calculation is to identify the existence of any structural problems on the
wing box boundary and to assure the correctness of the finite element
method model. This assurance is especially important wher the computer
generated model is used to explore different optiori3 of payload
redistribution feasibility studies, operation envelope definition and
structural design tradeoffs.

The extension remains to utilize the finite element model for various
load conditions combining the boundary shears and moments together with
several inertial distributions representative of the limiting flight envelope.
The critical center section components are to be identified and redesigned
from the wing box feasibility studies which, in turn, will lead to an
optimized solution. The options will include structural fortification,
composite reinforcement, substitution, and inertial distribution limitations
within the center section.
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At this stage, finite element output is limited to stress and deformation
data. Software options are also available to generate dynamic responses
which are needed for flutter characterization.

This analytical package facilitates the generation of design points for
the replacement center section wing box. Successful implementation of the
product will provide the technical basis for RFP generation.
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APPENDIX A. BOUNDARY CONDITIONS

A. P-3C FUSELAGE WEIGHT BREAKDOWN
(Weights from P-3C specification 1983)

COMPONENT WEIGHT(LB S)

TAIL 1965
WING 9095

WING 7595
C.S. 1500

PROPULSION 15041
NACELLE 4877
LANDING GEAR 3666

MAIN 3055
NOSE 611

AIR COND./ANTI-ICE 2022
WING 800
NOSE 322
C.S. 800
REAR 100

FLIGHT CONTROLS 1509
WING 750
C.S. 600
REAR 159

ELECTRICAL 1813
WING 500
C.S. 1313

INSTRUMENTS 477
HYDRAULIC 433
BODY 9973

NOSE 4773
C.S. 1200
REAR 4000
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APU 514
ELECTRONICS GROUP 10376

NOSE 3376
C.S. 6000
REAR 1000

ARMAMENT 1404
FURNISHINGS 3830

NOSE 2000
C.S. 330
REAR 1500

PHOTO 89
67,084

B. SHEAR AND MOMENTS BY SECTION
1. Nose -- Loads at F.S. 571

COMPONENT ............. WEIGHT MOMENT-ARM MOMENT
(LBS) (IN) (105 IN-LB)

INSTRUMENTS 477 350 1.66
BODY 4773 275 13.10
APU 514 283 1.45
ELECTRONICS GP 3376 200 6.75
ARMAMENT 404 100 0.40
FURNISHINGS 2000 300 6.00
AIR COND. /ANTI-ICE 322 470 1.51
PHOTO 89 470 0.42
NOSE GEAR 611 300 1.83

SHEAR = 12566 LBS MOMENT 3.31 * 106 IN-LBS @ 'g

SHEAR = 37698 LBS MOMENT = 9.93 * 106 IN-LBS @ 3g
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2. Rear -- Loads at F.S. 695
COMPONENT ............. WEIGHT MOMENT-ARM MOMENT

(LBS) (IN) (105 IN-LB)

TAIL GP 1965 505 9.92
BODY 4000 250 10.00
FURNISHING 1500 200 3.00
FLIGHT CONTROLS 159 300 0.48
ELECTRONICS 1000 100 1.00
AIR COND. /ANTI-ICE 100 400 0.40

SHEA' = 8724 LBS .OMENT = 2.48 * 106 IN-LBs @ Ig

SHEAR = 26172 LBS MOMENT = 7.44 * 106 IN-LBS @ 3g

EQUILIBRIUM REQUIRES NOSE & AFT MOMENT EQUAL
THEREFORE ASSUME DIFFERENCE IN MOMENTS COMES FROM
ELEVATOR FORCE.

ELEVATOR MOMENT = 0.83 * 106 IN-LBS

3. I( _, nter Section
COMPONENT WEIGHT (L S)

HYDRAULIC 433
ELECTRICAL 1313
FLIGHT CONTROLS 600
BODY 1200
ELECTRONICS GP 6000
ARMAMENT 1000
FURNISHINGS 330
AIR COND. /ANTI-ICE 800
WING 1500

CENTER SECTION WEIGHT = 13176 LBS @ Ig, 39528 LBS @ 3g
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C. WING LOADS
(Provided by Aerostructures Inc.)

200000

ig

150000 - _____ _ _ _ _ _ _ _ _ _ _3g

100000

50000

0 100 200 300 400 500

Wing Station (in)

Figure 18. P-3C Wing Shear : 135,000 pounds gross weight.
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0 3g

00

E

00

0 100 200 300 400 500

Wing Station (in)

Figure 19. P-3C Wing Moment : 135,000 pounds gross weight.

50



APPENDIX B. GENERAL SHEAR SOLUTION

The following argument follows directly from Reference 1.

y

xs
t t

q(x,s.)

4 Ax

Solving for the shear begins with summing the forces in the x
direction:

XFx=O (B.1)

0= f 11 4M(Yx t(xos) ds - f f(Crx(x)[t(xo)- Atx(s)] ds +

f (xs 1)+Aq ) dx - f q( x, s I) dx (B.2)
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Cancelling like terms and dividing by AsAx Equation B.2 simplifies to:

0 YAt'(s) 1s + XXX xs)d+

A Ax As A x

1 Aq,(x) 1 1At (s)
Jxaz dx- - A Aa -=d s (B. 3)

Ax f As AsJf Ax

Since the thickness does not vary along the length. the sheet those te,
fall out of the expression leaving:

dq a~
d -t(X0,s) X, (B.4)

Integrating both sides of of Equation B.4 yields:

q~s ~s= - t- ds (B.5)

fo ax

Substituting the general expression for axial stress (crxx) developed in the

earlier solution into Equation B.5 produces:
Si

a- E M~y I y E-- MH Yzj~)tds (B.6)
jax El *2 El 2

fo(Iyy'zi 'yz (Iyylu 1yz

Applying symmnetr- -o the geometry removes the cross product of inertia
terms. Taking the tial derivative with respect to x yields:
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f s s qMzE[ -]+ -MyEI]z zt ds (B.7)q~s, =ax=O -{ )- E l izz  ax E , I Y

0

a - ^' ,(X) -V y(X) (B.8), 'M=-M y(x) +V z(X) (B.9)

ax ax

Substituting the definitions from Equation B.8 &9 into B.7 and neglecting
the distributed moments for the given 3g loading condition results in:

( -Vy(x) EVZx)
)= ] y+ lz)tds (B.10)

UE Iz z  E Iyy

For a given location of x the shears are constant and may be removed from
the integral along with the moments of inertia. Employing the definitions

from Equation B.l l&12, Equation B.10 reduces to:

Qz-- E- zd tB1) Q -zds (B. 12)EE-: f Ey t ds (B. 11), QY =(B.1E)

Vy(X) 0 VZ(x) 0
q(s )= q(s=O) - Qz - "'- -Qy (B.13)

Izz Iyy

Assuming the shear (Vy) produced by a rudder deflection and experienced

at F.S. 695 is negligible, equation B. 13 reduces to:
V(x)•

q(s 1)= q(s--0) z I-- -Q (B. 14)

SYY

5yy
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APPENDIX C. NODAL POINT LOCATIONS FOR FEM

A. FEM OF FUSELAGE BOUNDARY CONDITION
1. Fuselage Boundary Modeling

nodal point locations 1
1, 0, 54, -72 through 5, 527, 54, -72
6, 0, -54, -72 through 10, 527, -54, -72
11, 0, 54, -8 through 15,527, 54, -8
16, 0, -54, -8 through 20, 527, -54, -8
21,0, 54, 8 through 25, 527, 54, 8
26, 0, -54, 8 through 30, 527, -54, 8
31,0, 54, 10 through 35, 527, 54, 10
36, 0, -54, 10 through 40, 527, -54, 10
41,0,-63, -8 through 45, 527, -63, -8
46, 0, -63, 8 through 50, 527, -63, 8
51, 0, 63, -8 through 55, 527, 63, -8
56,0, 63, 8 through 60, 527, 63, 8
blank line
c bars are all circular cross-sections
c quad plates are all shear members 1/4 inch thick
c 2024-T4 aluminum material
material properties 10.5E6, 0, 2.59E-4, 0.33,40E3
c X dir rods
beam type 3 4.76 0
element generate 21
1510150
blank line
beamtype3 6.31 0
element generate 21
51 5545 1 100
5660501 100
21 2530 1 50
blank line
beam type 3 7.90 0
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element generate 21
11 1520150
blank line
beam type 3 2.52 0
element generate 21
31 35401 50
blank line
c Y dir rods
beamtype3 2.12 0
element generate 21
1 5 10 15 1
31 354015 1
blank line
beam type3 5.15 0
element generate 21
4520 1625 10
2015 11 5 10
155551 40 1 0
50302620 1 0
302521 5 1 0
25 60 5635 10
blank line
c Z dir rods
beamtype3 2.12 0
element generate 31
15 10401 5 102
blank line
beamtype3 1.78 0
element generate 31
41 45 55 601 1052
blank line
quad plate element 3 0 0.25
element generate 31
1 5 10401 5 100
1 5 10 40 1 5 10 1
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15104015 102
41 45 55 60 110 5 1
blank line
do connect 26 46 41 16 through 30 50 45 20 step 1 11 1
do connect 21 56 51 11 through 25 60 55 15 step I 1 1 1
element generate 21
162045 1 25
26 30 50 1 20
51 55 15 1 40
56 60 25 1 35
blank line
end definition

2. Fuselage Load Conditions
c load condition for fuselage station 571-Ig St Venant
forces and moments applied 1
fz 2094 51015202530
blank line
displacements applied 1
ta 0.0 16
tx 0.0 16112126313641465156
tz 0.0 16112126313641465156
blank line
solve
quit

B. FEM OF WING BOUNDARY CONDITIONS
1. Wing Boundary Modeling

c wing station 65 shear loads located at 33% chord
nodal point locations 1
1 0-600
2 80-60 0
3 0-6016
4 80-60 16
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17 0-70 0
18 80-70 0
19 0-70 16
20 80-70 16
blank line
nodal point locations 31
12420124
blank line
c all beams have circular cross section
c quad plates are all shear members 1/4 inch thick
c 2024-T4 aluminum material
material properties 10.5E+06, 0, 2.59E-4, 0.33, 40E+03
beam type 3 5.04 0
element generate 31
1 24 20 1 2420
blank line
beam type3 1.38 0
element generate 31
1 2420 1 2400
1 24 20 1 24 1 0
blank line
quad plate element 3 0 0.25
element generate 31
124201240
124201241
124201242
blank line
end definition

2. Wing Load Conditions
c wing box centroidal loading lift line at 33% chord
forces and moments applied 1
fy 1.828E+05 1920
fy -1.828E+05 17 18
fz -5064 17 19
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fz 7136 1820
fx 5184 17 18
fx -5184 1920
blank line
displacements applied 1
ta 0.0 1 2 3 4
blank line
solve
quit
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APPENDIX D. FINITE ELEMENT IMPLEMENTATIONS

Appendix D outlines the procedures necessary to correctly model a
structure using the finite element method. The first portion discusses the
modeling elements and is followed by an explanation of displacement and
equilibrium force boundary conditions. Application of the Saint-Venant
Principle to modeling centroidal force distributions completes the topic.
Examples which highlight these issues are supported with numerical results
and summarized.

The first decision that one must make when modeling a structure lies in
choosing the correct elements. Rods and sheets constitute the model for the
hand calculation. The PAL2 software provides four beam type elements
and two quadrilateral plate elements from which to select. The first sheet
element provides resistance to bending, axial and shear loads. In resisting
bending and axial loads, this element impedes relative displacement motion
between the nodes that surround it. Another way to state this behavior is
that the element stiffens the k matrix. The second sheet type resists only
shear loads. Since the plate elements do not resist relative motion between
the surrounding nodes, this plate must be surrounded by beam elements as
a picture is surrounded on its four sides by a frame. Beam 4 models an
anti-symmetric cross sectional element. Beam 3 models a rod with circular
cross section. The user defines the inner and outer rod diameter. The
program automatically calculates the remaining geometric properties from
this information including the shear area. The shear area represents a
fictitious area that corrects for the parabolic shear distribution across the
face of an element. For a circular rod, the shear area equals the cross
sectional area divided by 1.185. Beam 2 creates a rectangular cross section
which varies in height and width along its length. Beam 1 generates a
constant area cross section member. In addition to the area, the user must
specify the torsional moment of inertia, the moments of inertia, the shear
area, and the distance from centroid to the most distant point on the cross
sectional area. The shear area correction factor for a square cross section
beam is 1.20. Curved beam elements are also available but not used since
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the hand model was constructed from straight rods to facilitate calculation.
The second area of interest lies in displacement boundary conditions;

how to tie the structure down in space to prevent that unequilibrated shear

of 10-7 pounds from driving the structure into the computer abyss. If six
degrees of freedom were eliminated from one location on the structure,
would the tie down affect the internal stresses? To illustrate this point,
four circular rods of one square inch cross section (beam type 3) surround
a 100 square inch shear plate of the second type discussed above. The left
two nodes have their x, y and z translations set to zero while a shear force
of unity in the negative z direction is applied to the upper right hand node.
The reaction forces are calculated at the left end by the software. -aese
reaction forces are applied to the left end with the same shear load -ule
the displacement boundary conditions are eliminated from the left end and
three translations and rotations are set to zero on the lower right hand node
of the structure. The reaction forces calculated at the lower right hand
node for this second case are eleven orders of magnitude less than the
applied load while the internal stresses are unchanged in all five elements.
Similar results are obtained for an example extended into the third
dimension. The results from this exercise enable the center sectior Xing
box to be tied down at one node since it too is in static equilibrium. With
confidence one knows that there will be insignificant stresses generated
within the modeled structure due to the displacement boundary condition.

Finally, the St. Venar principle must : addressed when applying
boundary condition loads and displacements. Unequilibrated loads are
transmitted through the body while equilibrated loads dissipate quickly as
they extend through the structure. From the modeling aspect this affects
the manner in which one exerts forces on the structure. If large single
point forces are applied at a few nodes around the structure, this practice
may lead to the finite element solution being driven to an alternate form.

Consider a hollow square beam forty inches in length (figure 20).
The beam consists of four cubes of eight nodes each whose faces in the
longitudinal direction are absent while the remaining four faces are made
from shear plates (type 2) 1/10 inch thick. Circular rods of five square
inch cross sections connect the longitudinal edges of the forty inc eam.
Square beams of 1/100 square inch cross sections surround the rei .ning
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sides of the quadrilateral plate elements. The small dimension of the
secondary beams enable a blending with the sheets. The four left end nodes
of the long beam are attached with three translational degrees of freedom
set to zero. The right end has a shear load of unity applied to the upper
node nearest the observer. The manner in which one applies the load
determines the form of the solution taken by the finite element method. If
the load is applied as described above, the right end panel nearest the
observer will display a shear of 0.984 psi. Observation of the output
stresses five inches from the right end of the long beam reveals that the
beam is in static equilibrium. Results from the hand calculation predict a
value of 0.750 psi.(see Allen and Haisler p221). However, if the shear load
above is redistributed to the centroid as a shear and moment with one
quarter of each divided among the four end nodes, the expected solution of
0.742 psi results or one percent variation from the hand calculated
solution. Static equilibrium is satisfied by this solution at the same location
described above. In practice, loads should be distributed as evenly about
the structure as possible.

St.x

1 .25 .25 .50

.25 - .25

or 1

25 .25 .25

.25

Figure 20. Square Beam Model
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For the case in which the boundary condition loads are not perfectly
matched to the internal stresses, Saint-Venant points out that the structure
requires space to enable the equilibrated forces to dissipate. As an
extension of the previous problem, consider a similar beam consisting of
twelve cubes of which five are shown in Figure 21. The first plane of
interest lies 1/8 th of the distance from the loaded end to the wall. The end
cube of the beam is subdivided from one to two sheets per face (case a),
from two to four (case b), and from four to six (case c). The increased
number of end nodes facilitates the application of a more evenly distributed
superposition of shear and moment loads to the beam in comparison to the
previous example. The results of the three plar are compared the
hand calculations for each of the three conditioas shown in Figure 21.
Figure 22 shows the loading for cases a and b. Case c distributes the load
in a similar fashion among sixteen nodes.

z

case a

case b

case c

-- plane 1

plane 2

Figure 21. Twelve Cube Beam
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z

moment = 1/12
shear -,1/8

Figure 22. Load Conditions : superposition of shear and !orsion loads
as seen from end view of case a and case b.

A. SUMMARY
In Figure 23 the observer is viewed from the negative z axis from -le

wall. In Figures 24, 25, and 26, r1 is located in the upper right-hand

comer, -r 2 = t 4 is in the lower left comer, and '3 is in the center.

The stresses in plane 1 (Figure 24) vary by as much as forty percent
from the hand results while by plane 2 (Figure.25) the variation drops
dramatically to 5.6 percent. The stress difference in plane 3 (Figure.26)
reduces further to 3.2 percent. As the distance from the boundary
condition increases from plane 1 to plane 3, the finite element stresses
approach the hand calculations thereby validating the Saint-Venant
principle.
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Figure 23. Axial View of Example Beams
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Figure 24. Plane 1 Results
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Figure.25. Plane 2 Results
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Figure 26. Plane 3 Results
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As an extension of these example problems to the center section wing
box, dummy structural area must be located between the boundaries of the
structure and the applied loading conditions. This area will ensure that the
proper shear stresses are retrieved from the structure as occurred in
moving from plane 1 to plane 2 above. The moments of the applied
loading condition must be modified to account for the added distance
through which they must act.

These results which compare hand calculations (using the Euler-
Bernoulli assumption) to those of the finite element method illustrate the
importance of correctly modeling the boundary conditions to minimize
their effect on the results. In addition, "dummy extended space" facilitates
the location of centroidally distributed loads through the Saint-Venant
Principle.
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